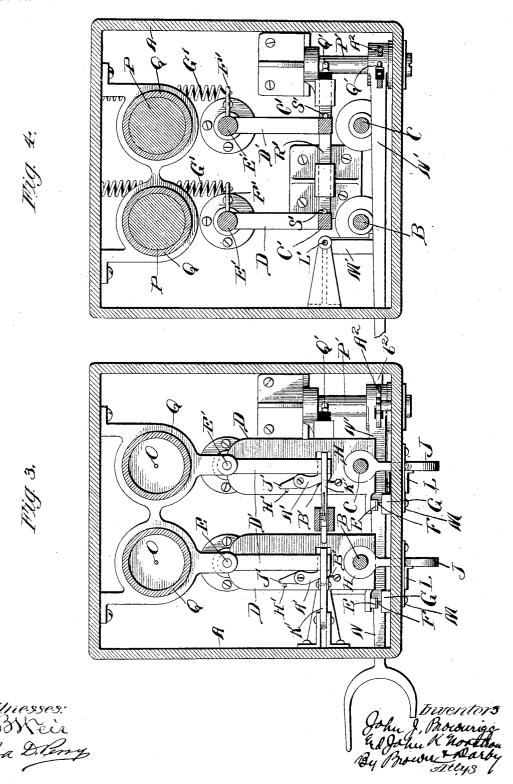

J. J. BROWNRIGG & J. K. NORSTROM.

CALLING MECHANISM FOR AUTOMATIC TELEPHONE SYSTEMS.

APPLICATION FILED DEC. 26, 1900. RENEWED MAY 2, 1903.

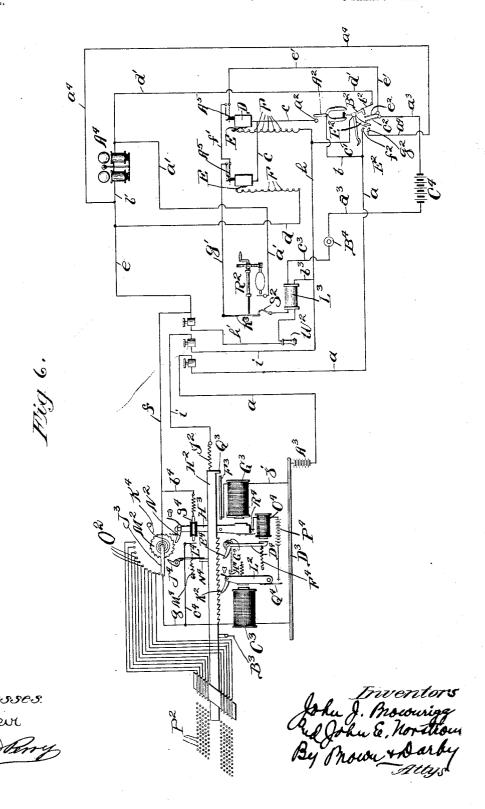

J. J. BROWNRIGG & J. K. NORSTROM.

CALLING MECHANISM FOR AUTOMATIC TELEPHONE SYSTEMS.

APPLICATION FILED DEC. 26, 1900. RENEWED MAY 2, 1903.

NO MODEL.

3 SHEETS-SHEET 2.


J. J. BROWNRIGG & J. K. NORSTROM.

CALLING MECHANISM FOR AUTOMATIC TELEPHONE SYSTEMS.

APPLICATION FILED DEC, 26, 1900. RENEWED MAY 2, 1903.

NO MODEL.

3 SHEETS-SHEET 3.

UNITED STATES PATENT OFFICE.

JOHN J. BROWNRIGG AND JOHN K. NORSTROM, OF CHICAGO, ILLINOIS, ASSIGNORS, BY MESNE ASSIGNMENTS, TO THE GLOBE AUTOMATIC TELEPHONE COMPANY, OF CHICAGO, ILLINOIS, A CORPORATION OF ILLINOIS.

CALLING MECHANISM FOR AUTOMATIC TELEPHONE SYSTEMS.

SPECIFICATION forming part of Letters Patent No. 738,157, dated September 8, 1903.

Application filed December 26, 1900. Renewed May 2, 1903. Serial No. 155,313. (No model.)

To all whom it may concern:

Be it known that we, John J. Brownrigg and John K. Norstrom, citizens of the United States, residing at Chicago, in the county of 5 Cook and State of Illinois, have invented a new and useful Calling Mechanism for Automatic Telephone Systems, of which the following is a specification.

This invention relates to calling mechanism

10 for automatic telephone systems.

The object of the invention is to provide a construction and arrangement which is simple and efficient, whereby one subscriber of a system may readily and quickly call any other 15 subscriber.

The invention consists, substantially, in the construction, combination, location, and arrangement, all as will be more fully hereinafter set forth, as shown in the accompanying drawings, and finally pointed out in the

appended claims.

Referring to the accompanying drawings and to the various views and reference-signs appearing thereon, Figure 1 is a view in front 25 elevation, a portion of the front plate or board broken away, showing a construction of call device embodying the principles of the invention. Fig. 2 is a longitudinal transverse section of the construction shown in Fig. 1. 30 Fig. 3 is a transverse section on the line 33, Fig. 1, looking in the direction of the arrows. Fig. 4 is a similar view on the line 4 4, Fig. 1, looking in the direction of the arrows. Fig. 5 is a broken detached detail view in section, 35 showing a modified arrangement of the cylinder. Fig. 6 is a diagram illustrating the action of the apparatus.

In carrying out my invention the various contacts and mechanical operations may be effected by a wide variety of different mechanical constructions. In the accompanying drawings various constructions for accomplishing the desired result are shown. In the drawings is shown a form of construction and arrangement embodying the principles of the invention, and this construction and arrangement will first be described.

Reference-sign A designates a box or cas-

ing in which the various working parts of the apparatus are inclosed. Arranged within 50 this casing are suitable guide-rods B C, upon each of which is mounted a slide or carrier D, each slide or carrier carrying a contact plate or strip E, arranged to operate over a series of contacts F, formed in a continuous 55 strip carried in a suitable board G, of insulating material. The contacts F of each series are arranged a suitable distance apart, whereby when the carrier D moves in a direction to carry the contact-plate T thereover 60 said plate will make intermittent contact with the contact-points F, the purpose of which will be more fully explained hereinafter. Loosely mounted upon each guide-rod B C is a sleeve H, each sleeve provided with a han- 65 dle J, arranged to project through a slot K in the front plate of the call-box into convenient position to be grasped by the subscriber or operator. Each handle may be provided with a pointer L, cooperating with a gradu- 70 ated scale, (indicated at M, Fig. 1.) A stop N may serve to limit the movement of sleeve H in one direction. Each sleeve is arranged to bear upon the carrier D of its guide-rod B C, so that when either handle J is grasped and 75 moved lengthwise through the slot K such movement of sleeve H upon its guide pin or post will effect a corresponding movement of carrier D along said post. A cord, thread, or rope (indicated at O) is connected at one end 80 to each carrier D, and after riding over suitable guide-sheaves the other end of said rope is connected with a plunger P, arranged to operate in a cylinder Q. The relative weights of plunger P and carrier D are so propor- 85 tioned that the plunger P, operating as a counterbalance or counterweight for the carrier, will overbalance the carrier D sufficiently to overcome not only the weight of said carrier, but the friction, and hence con- 90 stantly tends to maintain the carrier in one limit of its movement or to return such carrier when it is displaced by the manipulation of the handle J, as above explained. It is important and desirable to provide means 95 whereby the return of a carrier when it has

738,157 2

once been displaced to initial position may be graduated and regulated. It is also desirable that such return may be effected by a uniform movement. Many specifically dif-5 ferent arrangements for accomplishing this result may be provided. In the particular form shown, to which, however, the invention is not limited or restricted, the cylinder Q may be provided with a contracted open co end, as indicated at R, and the opposite end of said cylinder is opened to the fullest extent to the outer air. The result of this arrangement is that when carrier D is displaced and plunger P is raised in cylinder Q a too-rapid 15 movement of the carrier D is avoided by reason of the contracted opening R at the lower end of the cylinder, and when the handle J is released by the operator the plunger P will descend in cylinder Q, the contracted open-20 ing R regulating the exhaust of air from said cylinder, and hence securing a uniform return of the carrier to its initial position. If desired, means may be provided for graduating or regulating the amount of opening of 25 the contracted passage R-as, for instance, by means of a pointed pin or screw S. Fig. 2.) This feature, however, may be omitted. (See Fig. 5.) It will be observed from the foregoing de-

30 scription that the sleeves H have no connection with the carrier D except a bearing there-Therefore when a sleeve H is displaced longitudinally upon its guide-rod D said sleeve will merely carry before it a carrier D;

35 but the sleeves H may be returned to initial position without carrying with them the car-This is a desirable arrangement, riers D. because thereby the contact E is not carried over the contacts F too rapidly. In other

40 words, the sleeves H may be returned to normal or initial position, while the return of carriers D is regulated and controlled and is made uniform in speed by reason of the contracted throat or opening R at the discharge

45 end of the cylinder Q.

Upon each carrier D is pivoted a pawl A', each pawl being held by a spring B' in engaging relation with the teeth of a ratchetbar C', the teeth of said ratchet-bars being 50 presented in a direction to permit the pawl A' to ride thereover when said carriers are moved under the influence of the sleeves H, but permitting said pawl to engage in said teeth to prevent the return movement of said 55 carriers so long as the rack-bars are held in engaging relation with respect to the pawls. The rack-bars C' are carried by arms D', formed in or secured to pivotally-mounted rods E'. Each rod E' is provided with an arm 60 or pin F', to which is connected a spring G', the tension of which is constantly exerted in a direction to rock said rod E' and to carry the rack-bars C' out of engaging relation with respect to the pawls A'. A pin or stop (in-65 dicated at H') may be arranged to engage a tail projection J' of the pawls to prevent said

from following up the rack-bars when said rack-bars are permitted to move out of engaging relation with respect to said pawls. 70 When the racks C' are moved into engaging relation with respect to the pawls A', they are held in such position by means of latches K'. One of said latches K' has connected thereto a rod L', having the free end thereof 75 arranged to be engaged by a projection or flange M', carried by the receiver-lever N', when said receiver-lever is permitted to rise under the influence of spring O'. In other words, when the receiver is removed from its 80 hook, the receiver-lever N' is sleeved upon a rock-shaft P' in the usual manner. An arm or pin Q', arranged to be rocked by the receiver hook or lever, is arranged to engage a rod or bar R', mounted to slide in suitable 85 bearings, and which bar is provided with pins or stude S', adapted to engage the rackbars C' to move the same into engaging relation with respect to the pawls A'. The movements of the receiver-hook N' also effect ac- 90 tuation of contact devices A², B², and E², the contact devices A² serving to complete circuit through a contact-point a^2 . The contact device B² is arranged to complete circuit when in position through a contact b^2 and when in 95 another position arranged to bridge the contacts $c^2 e^2$, and the contact device E^2 is arranged to make a wiping-bridge between the contact-points f^2 g^2 , the purpose of all of which will be more fully explained herein- 1co after.

The mechanical operation of the construction so far described is as follows, assuming the parts to be in the relative positions thereof indicated in the drawings: When a subscriber 105 desires to call up any other subscriber of the system, whose number is—for instance, 65the subscriber before removing his receiver from its hook grasps one of the handles Jsay, for instance, the one on the left-and 110 draws the same down until the pointer L thereof coincides with the numeral 6 of the scale, thereby correspondingly moving the carrier D and contact E, associated therewith. operator also grasps the other handle J and 115 draws it down until its pointer coincides with the numeral 5 on its dial or scale. The subscriber's receiver is then raised from its hook, permitting said hook to swing into upper po-This movement causes flange or pro- 120 sition. jection M' to engage the end of rod L'and project the same vertically, thereby causing hook-ratchet K' to be released from its rack, and when the carrier D first actuated returns to its initial position said carrier is arranged 125 to engage a lever F², which is provided with a lug or projection G², arranged to engage the holding-ratchet K' of the other rack, thereby releasing both racks, permitting said racks to be moved out of engaging relation with re- 130 spect to their holding-pawls A'. Of course it will be understood that neither of the carriers D will be returned to initial position, pawls under the influence of their springs B' l until after the local receiver is raised from

its hook, and the first action occurring after the raising of said hook is to detach the holding-ratchet of the first rack and permit it to swing out of the way of its pawl and the re-5 turn of the first carrier, the second carrier not being released until the first carrier arrives at its initial position and releases the latch ${\rm K}',$ which holds the rack of the second carrier. The same movement of the receiver-10 hook completes circuit between the contact device A^2 , and contact-point a^2 breaks the circuit between contact device B2, and contact b2 bridges the space between contact-points e^2 and e^2 and effects a wiping-bridge between 15 contact-points f^2 and g^2 . The subscriber in the meantime having secured his desired connection, as will presently be more fully explained, proceeds with his message, and when such message is finished he replaces his re-20 ceiver upon hook N', thereby breaking contact between device A^2 and contact-point a^2 , completing contact between contact device B² and b², breaking circuit between contactpoints c2 e2 and also breaking contact between 25 contact-points f^2 g^2 . The same action effects a projection of rod or bar R', thereby restoring racks C' through the engagement therewith of lugs or projections S' into position for said racks to be engaged by the detaining 30 hook-latches K' and in engaging relation with respect to the pawls A'. Thus the apparatus is restored to initial position, ready for further

Many specifically different arrangements 35 of apparatus for effecting a selection of the desired wires by the subscriber may be employed in connection with the calling apparatus above described. A selector mechanism construction which has been found in 40 practice to be efficient and satisfactory is shown somewhat diagrammatically in Fig. 6, wherein reference-sign H² designates a movable rack-bar provided with ratchet-teeth corresponding in number to the number of 45 contacts F, over which a contact-plate E of one of the carriers operates. This rack-bar may be normally held in any suitable manner-as, for instance, by means of a spring $m J^2$ or otherwise—and is adapted to be moved 50 from such normal position by means of a pawl K^2 , carried by a lever L^2 , upon which is mounted or which constitutes the armature of an electromagnet C3, whereby when said electromagnet is energized said lever L2 is 55 rocked to cause pawl K2 to engage in a tooth of rack-bar H2 to move the same one step. The arrangement of circuit is such, as will be presently more fully explained, that electromagnet C3 is energized as many times as 60 there are contacts F, over which contactplate E of the first series above mentioned operates, each energization of electromagnet C⁸ effecting a feed or movement of bar H² one step. Thus in the example above given, 65 wherein the first carrier is moved to the numeral 6--that is, into position for the contact E-when the carrier returns to its initial po-

sition to move over six of the series of contacts F the magnet C3 will be energized six different times, and hence bar H2 will be ad- 70 vanced six distinct steps. Associated with bar H² is a selector-arm, (indicated at J³,) said arm being carried by or connected to move with a ratchet-disk M2, said ratchet-disk being rotatively actuated by means of a pawl 75 carried by a lever H^3 , said lever carrying or forming the armature of an electromagnet G³, and the arrangement of the circuits and the operation of the apparatus is such that electromagnet G3 is energized as many times 8c as there are contacts over which the contact E of the other carrier moves when displaced and returned to initial position. Thus in the example given above where the second carrier is moved to number 5 on the dial, the 85 return movement of said carrier to initial position causes its contact-plate E to move over or to make successive contacts with five of its series of contact-points F, and hence the electromagnet G3 will be energized five times, 90 thereby actuating ratchet-disk M2 five steps and advancing lever J³ to make contact with the fifth of a series of contacts O2. The combined and cooperative action of rack-bar H² and selector-arm J³ effects the proper circuit 95 connection from the calling-station to any desired circuit-terminal, (indicated diagrammatically at P^2 ,) thereby completing line-connection from the calling-station to the station to be called.

The electric operation of the system will now be described, particular reference being had to the diagram in Fig. 6. When it is desired to call up and to make automatic connection with a station of another subscriber 105 in the system, the operator sets the buttons or handles J at the desired point, as above explained, thereby displacing to corresponding positions the contact-carriers D. The handles J are then released and the operator 110 removes his receiver from its supportinghook. The first effect, as above explained, of removing the receiver from its supportinghook is to release the holding-rack bar C' of the first button, thereby causing the corre- 115 sponding carrier to return to initial position and the contact E thereon to travel over the desired number of contacts F, and hence sending the desired number of pulsations through electromagnet C3 through the following cir- 120 cuit: from battery A3, wire a, wire b, contact device A^2 , contact a^2 , wire c, traveling contact or wiper E, and contacts F of the first button, wire d, wire e, wire f, selector-arm J^3 , (which is in normal or retracted position,) 125 wire g, magnet C³, conductor-strip D³, which is a strip common to all the subscribers' lines, thence to battery A3. The resulting pulsations in electromagnet C3 effects the feed of rack H2 a corresponding number of steps. 13 The return of the second button or carrier D to its initial or normal position causes its wiper or contact-plate E to travel over the desired number of contacts F, and hence ef-

fects pulsations of current through magnet G3, corresponding in number to the number of contacts F, over which the wiper or contact-plate E of the second button or carrier 5 travels through the following circuit: from battery A³, wire a, wire b, contact device A², contact a^2 , wire c, wiper E, contacts F, wire h, wire i, bar H2, conductor-strip F3, magnet G^3 , wire j, conductor-strip D^3 , to battery A^3 . 10 Bar H2 when in its normal or retracted position is out of circuit with magnet G3, but is provided with a contact Q3, arranged to complete circuit from said bar to said magnet through conductor-strip F3 when said bar H2 15 is advanced its first step through the first actuation of lever L2, as above explained. The pulsations thus sent through magnet G3 effect a corresponding number of oscillations or vibrations of lever H3 and a consequent 20 movement of selector-arm J³ to the desired contact of the series O². These movements and the operation above described place the subscriber's line-wire in communication with the line-wire of the subscriber he desires to When the proper line connections are thus effected, the calling subscriber actuates his generator. (Indicated at R2.) erator is arranged when actuated to effect an opening between points K3 and point S2 in a 30 well-known manner and the closing of circuit between K3 and the generator R2. The calling-circuit is thereupon completed, as follows: from the generator R^2 , through wire a', signal device A^4 , wire b', wire e, wire f, se-35 lector-arm J3, the particular line-wire in connection with which said selector-arm J³ is in contact, thence to what will be termed the "normal" connection of the party to be called and indicated at B³. Suppose now the diagram in Fig. 6 illustrates the apparatus at the station of the party to be called. The signal-current enters through the normal connection B³ and continues through bar H^2 , wire i, wire h, wire c', 45 the receiver-hook contact device B^2 , contact b^2 , wire d', call device A^4 , wire b', wire e, wire f, selector-arm J^3 , wire g, electromagnet C^3 , common conductor-strip D^3 , thence returning to the apparatus of the party making Now assuming that the illustration in Fig. 6 is the apparatus of the calling party, said signal-current runs from the common conductor-strip D³, through wire j, magnet G³, strip F³, bar H², wire i, wire h, wire c', receiver-hook contact device B², contact e², wire e', wire f', wire g', contact K³, to the other side of the generator R2. Thus the subscriber has not only selected and made proper circuit connection with the line-circuit of another sub-60 scriber, but he has effected the proper signal to the other subscriber with whom he desires to communicate. The talking-circuit will now be traced. When the actuation of the generator is arrested, contact is again re-65 stored between contacts K³ and S² and the generator-circuit is broken thereupon and

contact K^3 to contact S^2 , the secondary winding of induction-coil L^3 , the receiver w^2 , wire h', wire f, selector-arm J^3 , the selected wire 70 as above explained, thence to normal connection B3 of the other subscriber. Now supposing the diagram to illustrate the arrangement of apparatus at the other party's station. The circuit continues from normal connection B3 75 to bar H^2 , wire *i*, wire *h*, wire c', the receiver-hook contact device B^2 , contact e^2 , wire e', wire f', wire g', contact K^3 , contact S^2 , the secondary of the induction-coil L³, receiver w^2 , wire h', wire f, selector-arm J³, wire g, 80 electromagnet C³, conductor-strips D³, thence returning to the apparatus of the calling party through wire j, magnet G^3 , strip F^3 , contact Q^3 , bar H^2 , wire i, wire h, wire c', receiver-hook contact device B^2 , contact e^2 , 85 wire e', wire f', wire g', to starting-point at K^3 . The transmitter (indicated diagrammatation) ically at B4) is included in circuit with the battery C4 and the primary coils of the induction-coil L3. This circuit is completed 90 when the receiver is raised from its hook as follows: from battery C^4 , through wire a^3 , contact c^2 , contact device B^2 , wire c', wire h, wire b^3 , the primary coils of induction-coil ${f L}^3$ wire c^3 , transmitter B^4 , wire d^3 , to battery C^4 . 95

The circuit above traced, which includes the wire f', is in the arrangement shown closed whenever the carriers D are in their normal or initial position, as indicated at A^5 ,

Fig. 2.

As above described, the bar H² is advanced one step each time the magnet C3 is energized by reason of the pawl K2 engaging with the teeth formed on or connected to bar H2. is important to provide means whereby when 105 pawl K2 is released—that is, whenever the circuit including magnet C3 is broken—said bar is prevented from returning to its initial position. A simple construction for accomplishing this result is illustrated, wherein a 110 lever D4 carries a pawl E4. Lever D4 is acted on by a spring F⁴, the tension of which is normally exerted to carry pawl E⁴ into engagement with the rack-teeth on bar H². When the parts are in their normal and ini- 115 tial position, the pawl E4 is held out of engaging relation with respect to the rackteeth of bar H2 by means of an arm G4, carried by or connected to lever D4, being engaged_underneath a lug or projection H4 on 120 lever L2. When, however, in the operation of the apparatus the magnet C3 is first energized and lever L2 is rocked to advance bar H2 its first step of advancement, the projection or detent H4 is released in respect of its 125 engagement with arm G4, thereby releasing lever D4 and permitting spring F4 to rock said lever into position for the pawl E4 thereof to engage in the rack-teeth of bar H2 to hold the same against return whenever the circuit of 130 magnet C³ is broken. After a disengagement between projection H4 and arm G4 has once been effected holding-pawl E4 will continue talking-circuit is completed as follows: from | in engagement with rack-teeth of bar H2,

however many times the pawl K2 may act, and until the parts are again restored to their normal and initial position. Similarly the ratchet-wheel M² after being actuated or ro-5 tatively moved by pawl N2 is held or locked against reverse rotation by means of a holding or locking pawl J4 and against the action The locking-pawl J4 is carried of spring K4. by a lever L4, upon which acts a spring M4, 10 the tension of which normally operates to throw pawl J⁴ into engaging relation with respect to said ratchet-wheel M². When bar H2 is in its retracted or initial position, a stop N4 thereon engages lever L4 to rock holding-15 pawl J4 out of engaging relation with respect to ratchet-wheel M². When, however, bar H² is moved its first or initial step, the lug N4 is carried free of lever L4, hence permitting pawl J4 to engage in a tooth of ratchet-20 disk M2, which engaging relation is maintained until bar H2 is restored to its normal position.

The construction, arrangement, and operation for restoring bar H² to its initial or retracted position will now be described.

Lever D4 carries or has formed therewith an armature for an electromagnet O4, the coils of which are included in circuit with a battery P^4 . Whenever magnet O^4 is energized, lever D^4 is attracted against the tension of spring F4 in a direction to disengage pawl E4 from rack-teeth of bar H2 and to carry the arm G4 into engaging relation behind the lug or projection H4. The circuit of battery 35 P⁴ is normally open, but is closed through contacts Q⁴ R⁴, respectively, carried by levers L² H³. Therefore in order to energize magnet O4 it is necessary for both magnets C³ G³ to be simultaneously energized. This 40 simultaneous energization is effected by the act of hanging up the subscriber's receiver upon its hook. This act causes the wiper E2 of the hook to momentarily bridge the space between the contacts f^2 g^2 , thereby completing the following circuit: from battery A^3 through wire a, contact f^2 , wiper E^2 , contact g^2 , wire a^4 , wire e, wire f, wire f, contact f^4 , wire $f^$ wire c4, through magnet C3, and thence to battery A³ through conductor-rod D³. 50 the same time the following circuit will be established: from battery A^3 through wire ato contact f^2 , through wiper E^2 , wire c', wire h, wire i, bar H^2 , contact Q^3 , contact-strip F^3 , magnet G^3 , wire j to battery A^3 . Thus both 55 magnets G^3 C^3 are simultaneously energized, thereby closing the circuit of magnet O4, releasing the holder-pawl E4, and permitting bar H2 to return to initial or normal position, and when said bar arrives at its initial or re-60 tracted position stop N⁴ thereon will release holder-pawl J4, thus restoring the parts to their initial or normal positions.

It is to be understood that many other forms and specific constructions and arrangements of parts of selecting apparatus may be employed without departure from the spirit and scope of my invention.

In the foregoing description I have set forth one form of construction embodying the principles of the invention for successively engizing electromagnets C³ G³, and in which is employed an air-cushion for regulating and controlling the movements of the successive contacts or of the apparatus by which the circuits of the electromagnets are made 75 and broken in effecting a call by the subscriber, and it has been stated that other specific forms of apparatus may be employed for accomplishing the same results.

Many other specifically different constructions embodying the principles of the invention may be employed for accomplishing the same result. The invention is therefore not limited or restricted in the specific construction and arrangement of the mechanical details thereof to the constructions shown and above described. It is also obvious that many variations and changes in the details of construction and arrangement of parts would readily occur to persons skilled in the art 90 and still fall within the spirit and scope of the invention.

Having now set forth the object and nature of the invention and various constructions embodying the principles thereof, what is 95 claimed as new and useful, and sought to be secured by Letters Patent of the United States, is—

1. In a calling apparatus for automatic telephone systems, means for selecting any subscriber's wire including movable contacts, means for manually displacing said contacts from normal position in making a selection, means for locking said displaced contacts in displaced position, mechanical devices for effecting the return of said displaced contacts to initial position, said contacts operating upon the return movement thereof to effect the desired call, devices for cushioning the return movement of said contacts, and means 110 for releasing said lock, as and for the purpose set forth.

2. In a calling apparatus for automatic telephone systems, selector devices for selecting any desired subscriber's wire including relatively stationary and coöperating movable contacts, manually-actuated devices for displacing said movable contacts to the desired position, said movable contacts coöperating with said stationary contacts upon the return removement thereof to effect the call, means for locking said movable contacts in displaced position, means for rendering the return movements of said contacts uniform, and means for automatically releasing said locks, 125 as and for the purpose set forth.

3. In a calling apparatus for automatic telephone systems, electrical devices for selecting any desired subscriber's line, circuits for said electrical devices, means arranged at the 130 calling-station for controlling said circuits, said controlling means including relatively stationary and movable contacts, manually-actuated devices for displacing said movable

contacts, said movable contacts cooperating on the return movement thereof to normal position with said stationary contacts to effect the desired call, means for locking said 5 displaced contacts in displaced position, an air-cushion apparatus for regulating and controlling the return movements of said displaced contacts whereby said return movement is made uniform, and means for releas-10 ing said lock, as and for the purpose set forth.

4. In a calling apparatus for automatic telephone systems, electrical devices including electromagnets for selecting the line-circuit of any desired subscriber, circuits for said 15 magnets, means arranged at the calling-station for controlling said circuits including stationary and movable contacts, means for displacing said movable contacts to desired position preparatory to making a call where-20 by when said movable contacts are returned to initial position they make successive contact with said stationary contacts to effect the call, and means for imparting uniform speed to said movable contacts during the re-25 turn thereof to initial position and while making said successive calling-contacts, as and for the purpose set forth.

5. In a calling apparatus for automatic telephone systems, electrical devices operating 30 to select any desired subscriber's line, circuits for said devices, a make-and-break device arranged in said circuit and including a series of stationary contacts and cooperating movable contacts, manually-actuated devices 35 for displacing said movable contacts relative

to said series of stationary contacts and in position preparatory to making a call, means for locking said movable contacts in displaced position, means for releasing said lock, and 40 an air-cushion for controlling the return

movement of said movable contacts to initial position, said return movement effecting the desired call, as and for the purpose set forth. 6. In a calling apparatus for automatic tele-

45 phone systems, electrical devices arranged to select the line-wire of any desired subscriber, circuits for said electrical devices, a circuitinterrupter arranged in said circuit and including movable contacts, means under the 50 control of the subscriber for displacing said movable contacts into position preparatory to effecting the desired interruptions of said circuit, said movable contact operating to effect the desired circuit interruptions during the 55 return movement thereof to initial position, and an air-cushion for controlling the speed of said movable contact during the return movement thereof, as and for the purpose set forth.

7. In a calling apparatus for automatic telephone systems and in combination with electrical devices for selecting any desired subscriber's wire, a circuit for said electrical devices, a series of stationary contacts arranged 65 in said circuit, a movable contact arranged to operate over said series of stationary con-

tacts to successively make and break said circuit, manually-actuated devices for displacing said movable contact into position preparatory to effecting said successive makes 70 and breaks, a plunger connected to said movable contact and operating to return the same to initial position when displaced, and an aircylinder in which said plunger operates whereby during the return movement of said mov- 75 able contact in making and breaking the circuit of said selector devices the speed of movement of said movable contact is rendered uniform, as and for the purpose set forth.

8. In a calling apparatus for automatic tele- 80 phone systems and in combination with electrical devices for selecting a subscriber's wire, a circuit for said devices including a series of stationary contacts, a cooperating movable contact, manually-actuated devices for dis- 85 placing said movable contact into position to cooperate during the return movement thereof to initial position with said stationary contacts to successively make and break said circuit, a plunger connected to said movable 90 contacts as a counterbalance therefor and normally operating to return said movable contacts to initial position, an air-cylinder in which said plunger operates, and means for regulating the exhaust of air from said cyl- 95 inder whereby during the return of said displaced movable contact and while successively making and breaking the selector-circuit the movement of said movable contacts is rendered uniform, as and for the purpose 100 set forth.

9. In a calling apparatus for automatic telephone systems, a movable contact, a carrier therefor, a series of relatively fixed contacts over which said movable contact operates, 105 manually-actuated devices for displacing said carrier to any desired position with reference to said fixed contacts whereby when said movable contact is returned it will make successive contact with said series of fixed contacts 110 to make and break, an electric circuit, an overbalancing-plunger for returning said carrier, means for locking said carrier in displaced position, means for automatically releasing said lock, a chamber in which said 115 plunger operates, and means actuated by the make and break of said electric circuit for selecting a subscriber's wire, as and for the purpose set forth.

10. In a calling apparatus for automatic 120 telephone systems, a call-box, a circuit, makeand-break devices arranged within said box, said make-and-break devices including a movable contact and series of stationary contacts, means for displacing said movable con- 125 tact into position to cooperate with said stationary contacts to successively make and break said circuit, a lock for holding said movable contact in displaced position, a receiver-hook, means actuated by the removal 13 of the receiver from said hook for releasing said lock, and an air-cushion for controlling

738,157

the return movement of said movable contact | to initial position, as and for the purpose set

11. In a calling apparatus for automatic 5 telephone systems, a call-box, a guide-rod arranged therein, a carrier mounted to slide upon and to be guided by said rod and carrying a contact-plate, means for displacing said carrier upon said rod into position prepara-10 tory to effecting a call, a series of fixed contacts over which said contact-plate operates to effect successive makes and breaks of an electric circuit during the return movement of said contact-plate to initial position, an 15 overbalancing-counterweight for said carrier normally operating to hold said carrier in initial or retracted position, and an air-chamber in which such counterbalance operates whereby the return movement of said con-20 tact-plate is rendered uniform in speed, as and for the purpose set forth.

12. In a calling apparatus for automatic telephone systems, a call-box, a cylinder arranged therein, a plunger operating in said 25 cylinder, a movable contact, connections between said contact and plunger, said plunger forming an overbalancing-counterweight for said contact and normally operating to hold the same in retracted position, a series of con-30 tact-points over which said movable contact operates, means for displacing said movable contact against the action of said counterweight, a lock for locking said movable contact in displaced position, a receiver-hook, 35 and means actuated by the removal of the receiver from said hook for releasing said lock, as and for the purpose set forth.

13. In a calling apparatus for automatic telephone systems, a series of fixed contacts, 40 a movable contact operating thereover, a plunger connected to and serving as a counterweight for said movable contact and operating to hold the same in a normal position, and manually-actuated devices arranged to 45 disconnectively engage said contact for displacing the same relative to its normal position, as and for the purpose set forth.

14. In a calling apparatus for automatic telephone systems, a series of fixed contact-50 points, a movable contact operating thereover, an overbalancing - counterweight arranged to hold said movable contact in a normal position, a handle or button disconnected from said contact but arranged to engage the 55 same when manually actuated to displace said movable contact whereby said movable contact is returned to normal position by its overbalancing-counterweight, as and for the purpose set forth.

15. In a calling apparatus for automatic telephone systems, a series of fixed contactpoints, a movable contact operating thereover, a plunger forming a counterbalance for said movable counterweight and operating to 65 hold the same in a normal position, a handle or button disconnected from but arranged to manually actuating to displace said movable contact to any desired relation with respect to said fixed contact-points, and a cylinder 70 in which said counterweight operates whereby when said movable contact is displaced it is returned at a uniform speed to its normal position, as and for the purpose set forth.

16. In a calling apparatus for automatic 75 telephone systems, a series of fixed contactpoints, a movable contact cooperating therewith, means for displacing said movable contact manually relative to said series of fixed contact-points and to any desired point of 80 displacement preparatory to making a call, means normally operating to return said displaced contact to initial position, means for locking said movable contact in displaced position, means for automatically releasing said 85 lock, and means for controlling the speed of the return movement of said movable contact to initial position, as and for the purpose set forth.

17. In a calling apparatus for automatic 90 telephone systems, a series of fixed contactpoints, a movable contact operating thereover, manually-actuated devices for displacing said movable contact from normal position to any desired point with reference to 95 said stationary contacts whereby said movable contact during the return movement thereof to initial position will make successive contacts with said fixed contacts, a lock for holding said movable contact in displaced 100 position, an air-cylinder, a plunger therein, connections between said plunger and said movable contact, said plunger operating as an overbalancing-counterweight for said movable contact and tending to normally hold 105 said movable contact in retracted or initial position, a receiver-hook and devices actuated by the movement of said hook when the receiver is removed therefrom for releasing said lock, as and for the purpose set forth.

18. In a calling apparatus for automatic telephone systems, a call-box, stationary contacts arranged in sets, a movable contact operating over each set of stationary contacts, overbalancing means connected to each mov- 115 able contact and operating to normally hold the same in initial position, manual devices for independently displacing each movable contact from initial position thereof and against the action of its overbalancing means, and 120 means for independently cushioning the return movement of each of said movable contacts whereby the speed of such movement is rendered uniform, as and for the purpose set

19. In a calling apparatus for automatic telephone systems, a plurality of fixed contact-points, a movable contact operating over each series of fixed points, an overbalancing-counterweight for each movable contact, 130 means for independently displacing said movable contacts against the action of its overbalancing-counterweight, a lock for each movengage said movable contact and adapted for I able contact to hold the same in displaced re-

125

lation, and means actuated by the return of j one of said movable contacts to normal position for releasing the lock of the next adjacent contact, as and for the purpose set forth.

20. In a calling apparatus for automatic telephone systems, a plurality of series of contact-points, a movable contact operating over each series of fixed points, means for displacing said movable contacts to any de-10 sired position, a lock for holding each contact in displaced position, means for automatically detaching one of said locks to permit its corresponding movable contact to return to initial position, and means actuated by the re-15 turn of said movable contact to initial position for releasing the lock of the next adjacent contact, as and for the purpose set forth.

21. In a calling apparatus for automatic telephone systems, a plurality of series of 20 fixed contact-points, a movable contact operating over each series of points, means for independently moving each of said movable contacts to any desired relation with respect to its corresponding series of fixed points, 25 means normally operating to maintain said contacts in initial or normally retracted position, an independent lock for holding each movable contact in displaced position, automatically-actuated devices for releasing the 30 holding-lock of one of said movable contacts,

and means actuated by the return of said released contact to normal or retracted position for releasing the holding-lock of the next adjacent contact, as and for the purpose set

35 forth.

22. In a calling apparatus for automatic telephone systems, a call-box, a plurality of series of fixed contact-points arranged therein, a guide-rod arranged adjacent to each se-40 ries of contact-points, a carrier arranged to be guided by each rod and carrying a cooperating contact, a plunger forming an overbalancing-counterweight for each carrier, a cylinder in which each plunger operates, 45 means for independently displacing each carrier against the action of its counterweight, locks for holding said carriers in displaced position, and means for automatically releasing said locks, as and for the purpose set forth.

23. In a calling apparatus for automatic telephone systems, a call-box, a series of fixed contact-points arranged therein, a movable contact operating thereover, a plunger connected to and serving as an overbalancing-55 counterweight for said movable contact to return the same to initial position, a pawl connected to said movable contact, a rack arranged to be engaged by said pawl to hold said contact in any desired displaced rela-60 tion, and means for disengaging said pawl from said rack to permit said carrier to re-

turn to normal position, as and for the purpose set forth.

24. In a calling apparatus for automatic 65 telephone systems, a call-box, a rock-shaft journaled therein and carrying a rack, a car-

teeth of such rack, a detent arranged to hold said rack in engaging relation with respect to said pawl, a plunger connected to and 70 serving as an overbalancing-counterweight for said carrier and operating to normally hold said carrier in initial or retracted position, means for displacing said carrier against the action of said counterweight, and means 75 for detaching said detent, as and for the purpose set forth.

25. In a calling apparatus for automatic telephone systems, a call-box, a rock-shaft arranged therein, a spring normally tending 80 to rock said shaft, a rack carried by said shaft, a carrier having a pawl arranged to engage in the teeth of said rack, a contact-plate carried by said carrier, a series of fixed contact-points over which said contact-plate op- 85 erates, a counterbalance for said carrier operating to maintain the same in normally retracted position, means for displacing said carrier with reference to said rack, a latch or detent operating to hold said rack against 90 the action of said spring and in engaging relation with respect to said pawl, and means for automatically releasing said latch or detent, as and for the purpose set forth.

26. In a calling apparatus for automatic 95 telephone systems, a call-box, a plurality of rock-shafts mounted therein, a spring connected to each shaft and normally operating to rock the same in one direction, a rack connected to each shaft, a contact-carrier asso- 100 ciated with each rack and each provided with a pawl arranged to engage in the teeth of such rack, detents for holding said racks in engaging relation with respect to the pawl of its carrier, a counterweight for each carrier 105 operating to normally maintain said carrier in retracted position, means for independently displacing said carriers against the action of their counterweights, means for automatically releasing the detent of one of said racks 110 to permit its carrier to return to initial or normal position, and means operated by said carrier when it arrives at its initial or normal position for releasing the next adjacent rack, as and for the purpose set forth.

27. In a calling apparatus for automatic telephone systems, a call-box, a shaft journaled therein and having a receiver-hook mounted thereon, a movable rack, a contactcarrier operated manually in one direction, 120 means for normally tending to return said carrier to initial position, said carrier being held in displaced position by said rack, means for moving said rack out of engaging relation with respect to said carrier to permit the latter to 125 return to initial position, and means actuated by said hook-supporting shaft for restoring said rack into engaging relation with respect to said carrier, as and for the purpose set forth.

28. In a calling apparatus for automatic 130 telephone systems, a call-box, a plurality of racks arranged therein, a contact-carrier associated with each rack, an independent latch rier having a pawl arranged to engage in the I for retaining each rack in engaging relation

115

with respect to its associated carrier, means] for normally tending to move said racks out of engaging relation, said racks adapted to be manually displaced, means normally tending 5 to return said carriers to initial position, a receiver-hook, means actuated by the rocking of said hook in one direction for releasing the holding-latch of one of said racks to permit the carrier associated with said rack to return 10 to normal position, and means actuated by the return of said carrier to normal position for releasing the latch of the next adjacent rack, as and for the purpose set forth.

29. In a calling apparatus for automatic 15 telephone systems, a call-box, movable contact-carriers arranged therein, said carriers adapted to be independently displaced manually, means normally operating to return said carriers to initial position, a rack ar-20 ranged to hold each carrier in displaced position, a latch for each rack for locking the same in engaging relation with respect to its associated carrier, means normally tending to move said racks out of engaging relation, a re-25 ceiver-hook, means actuated by the movement of said hook in one direction for releasing said racks to permit said carriers to return to initial position, and means actuated by said receiver-hook when moved in the opposite di-30 rection for restoring said racks to engaging position, as and for the purpose set forth.

30. In a calling apparatus for automatic telephone systems, a call-box, independent contact-carriers arranged therein, said con-35 tact-carriers adapted to be displaced manually, means normally tending to return said carriers to initial position, engaging devices arranged to engage said carriers and lock the same in whatever position to which they may 40 be displaced, a receiver-hook and means actuated by the release of said hook for successively releasing said carriers from said lock,

as and for the purpose set forth.

31. In a calling apparatus for automatic 45 telephone systems, a call-box, movable contacts arranged therein, a pointer and scale associated with each movable contact, said contacts arranged to be moved manually to any desired position indicated by said scale, 50 means normally tending to return said contacts to initial position, a lock for holding each movable contact in the position to which it has been manually displaced, means normally tending to release said lock, a receiver-55 hook, means actuated by the movement of said hook in one direction for releasing said lock, and means actuated by the movement of said hook in the opposite direction for restoring said lock to engaging position, as and 60 for the purpose set forth.

32. In a calling apparatus for automatic telephone systems, a call-box, a plurality of movable contacts arranged therein, said contacts adapted to be displaced manually, means 65 normally operating to return said contacts to initial position, locking-racks arranged to hold said carriers in their displaced positions, means normally operating to move said racks out of locking relation with respect to said contacts, independent latches for locking said 70 racks in locking position, a rod connected to one of said latches, a receiver-hook, means actuated by the removal of the receiver from said hook for engaging said rod to disengage said latch thereby permitting one of said mov- 75 able contacts to return to initial position, a release-lever arranged to engage the next adjacent latch, said lever being actuated by the return of the first movable contact to initial position to release said latch whereby the next 80 adjacent contact is permitted to return to initial position, as and for the purpose set forth.

33. In a calling apparatus for automatic telephone systems, a call-box, a bar arranged therein and carrying a series of contact- 85 points, a movable contact operating over said points, a carrier for said contact, a guide-rod on which said carrier slides, a sleeve loosely mounted on said rod and arranged to rest upon said carrier whereby said carrier may 90 be manually displaced, a plunger, a cylinder in which said plunger operates, connections between said plunger and said carrier whereby said carrier when displaced is returned automatically to initial position, a rock-shaft, 95 a rack carried thereby, a pawl mounted on said carrier and arranged to engage said rack whereby said carrier is locked when displaced, means operating to normally rock said shaft to disengage said rack from said pawl, a latch 100 for locking said rack in engaging relation, a receiver-hook, means actuated thereby when moved in one direction for releasing said latch, and means actuated by said hook when moved in the other direction for moving said 105 rack into engaging relation with respect to said latch, as and for the purpose set forth.

34. In a calling apparatus for automatic telephone systems, a call-box, a plurality of contact-bars arranged therein, each carrying 110 a series of contact-points, a guide-rod arranged adjacent to each contact-bar, a movable carrier guided by each rod and carrying a contact arranged to operate over the contact-points on said bar, a sleeve mounted on 115 each rod and arranged to rest upon the carrier guided by said rod to afford means for manually displacing said carrier, a plunger connected to each carrier, a cylinder in which each plunger is mounted to operate, a pawl 120 mounted on each carrier, a rack arranged to form a lock for each carrier when manually displaced to hold the same in displaced position, means normally operating to move each rack out of engaging relation with respect to 125 its associated pawl, a latch for locking each rack in engaging relation with respect to its pawl, a receiver-hook, means actuated by the movement of said hook in one direction for releasing said latch, and means actuated by 130 the movement of said hook in the opposite direction for restoring said racks into engaging relation with respect to said latches, as and for the purpose set forth.

35. In a calling apparatus for automatic telephone systems, a call-box having slots or openings therein, buttons or handles arranged within said call-box and projecting through and adapted to be manually moved along said openings, a pointer carried by each button and operating in association with a scale, a movable contact arranged to be moved in one direction by each button, means for normally returning or restoring each contact to normal position, and means actuated by the return of said contacts to initial position for completing circuit through said call-box to the line-wire of another subscriber, as and for the purpose set forth.

36. In a call mechanism for automatic telephone systems, a series of movable contacts, contact-points over which each of said movable contacts operates, means normally operating to maintain said movable contacts in

retracted position, means for displacing said movable contacts into position to make successive contact with the contact-points over which they operate upon the return thereof to initial position, means for locking said 25 movable contacts in displaced position, means for releasing one of said movable contacts, and means actuated by the return of said movable contact to initial position for releasing the next movable contact of the series, as 30 and for the purpose set forth.

In witness whereof we have hereunto set our hands, this 17th day of December, 1900, in the presence of the subscribing witnesses.

JOHN J. BROWNRIGG. JOHN K. NORSTROM.

Witnesses:
CHARLES H. SEEM,
S. E. DARBY.